Building Qt 6 from Git

From Qt Wiki
Revision as of 19:50, 20 August 2024 by Joger (talk | contribs) (Added CMakePresets example)
Jump to navigation Jump to search

En Ar Bg De El Es Fa Fi Fr Hi Hu It Ja Kn Ko Ms Nl Pl Pt Ru Sq Th Tr Uk Zh

This article provides hints for checking out and building the Qt 6 repositories. This is primarily for developers who want to contribute to the Qt library or try the latest unreleased code.

If you want to build a specific release of Qt from sources to use the libraries in your project, you can download the source code from the Official Releases page or the Archive. Commercial customers can download the Source Packages via the Qt Account portal.

System Requirements

  • Git (>= 1.6.x)
  • CMake (>= 3.16, >= 3.18.4 for Ninja Multi-Config, >= 3.19 for WebEngine, >= 3.21.1 for static Qt builds in Qt 6.2+, or builds for Apple platforms in Qt 6.6+)
  • Ninja
  • C++ compiler supporting C++ 17
  • Perl (>=5.14, optional for Qt >= 6.5)
  • Python (>=2.6.x)
  • libclang: >=15, optional when QDoc should be built. Pre-built versions for each OS can be downloaded here. Alternatively, they can be installed through the clang-15, libclang-15-dev and llvm-15 packages on Linux.
  • Windows: Visual Studio 2022, Visual Studio 2019, MinGW 11.2
  • Linux: OpenGL developing library (libgl-dev, libegl-dev), libfontconfig1-dev (for fonts to be rendered correctly), libinput-dev (for the XCB platform plugin), and the XCB libraries mentioned in https://doc.qt.io/qt-6/linux-requirements.html

Note for MSVC: Visual Studio 2019/2022 comes with CMake and ninja preinstalled. StrawberryPerl is a Perl version that does not need registration and comes as both an installer and a zip archive.

System Requirements - Qt WebEngine and Qt PDF

Qt WebEngine and Qt PDF have additional build requirements

  • Python (>=3.6.x)
  • Python html5lib
  • Bison, Flex
  • GPerf
  • Node.js version 8 or later (version 12 or later is recommended)
  • Windows: Visual Studio 2019 v16.11+ (required for QtWebEngine to address an issue with defaulted noexcept operators)
  • Windows: Windows 10 SDK >= 10.0.19041.0 (version 2004) for QtWebEngine

Getting the source code

Note: If you plan to use Qt 6.7 or later, please follow the steps outlined in the Qt Documentation at Getting Qt Sources from the Git repository before skipping to 'Configuring and Building Qt' below. For older versions, follow the steps in this section.

First, clone the top-level Qt git repository into a directory of your choice. On Linux-type operating systems, it is common to clone the Qt source code into ~/qt6. On Windows, we recommend cloning the Qt source code into a directory with a short path, for example, C:\dev\qt6 to avoid path length limitations on this platform.

In your terminal, navigate to the directory that will contain the qt6 top-level repository and use the git command line to make a clone:

$ git clone git://code.qt.io/qt/qt5.git qt6

Alternatively, if you're behind a firewall and want to use the https protocol:

$ git clone https://code.qt.io/qt/qt5.git qt6

Do not worry about the name mentioning qt5.git. This is also used for Qt 6.

Then check out the target branch (see Branch Guidelines). New feature development happens in the dev branch, which has the latest changes. You may also check out sources for any publicly released and tagged version, or any currently active branch.

$ cd qt6
$ git switch dev

To build a specific release of Qt, you can switch to the desired tag:

$ cd qt6
$ git switch 6.5.3

This will check out the 6.5.3 release. You can see all branch names in the repo overview.

For commercial-only modules and commercial-only branches of public modules, see Getting Commercial Qt Sources.

Getting the submodule source code

Before configuring and building Qt, the Qt submodules must be initialized and configured. This can be done using the init-repository script, which checks out the submodules and configures Qt with git pre-commit hooks and user credentials. This usually only has to be done once after the initial clone and is unnecessary later, even if you pull upstream changes.

Note: If you use Qt 6.7 or newer, you can use the configure script described in the next section to initialize the repository without using init-repository. One benefit of using the configure script is that it makes it easier to configure a 'slimmed down' Qt build with only the submodules you need, vastly reducing the time needed for configuring and building Qt. See Getting Qt Sources from the Git repository.

Relevant options for init-repository:

  • --module-subset : For example, to get modules for Qt Quick development: --module-subset=qtbase,qtshadertools,qtdeclarative. You can add or remove individual submodules later with git submodule init/deinit.
  • --codereview-username <Jira/Gerrit username> : If you plan to contribute to Qt, you may specify your codereview username (pay attention to capitalization!) so that the git remotes are properly set up. Note that it is recommended to adjust your ssh configuration instead.
$ cd qt6
$ perl init-repository

On Windows:

> .\init-repository.bat

Configuring and Building

Qt 6 is built with CMake and can be configured by running CMake with appropriate options. Qt also has a configure script, making it easier to call CMake with the correct arguments. This configure script (configure.bat on Windows) is located in the directory you git-cloned the source code into (~/qt6 if you followed the directions above).

When configuring the Qt build, we recommend to keep the build directory separate from the source code. This is done by calling CMake or configure from a different, parallel-level directory.

On Linux:

$ mkdir qt6-build
$ cd qt6-build
$ ../qt6/configure -prefix /path/to/install
$ cmake --build . --parallel 4
$ cmake --install .

Where 4 is the number of jobs. You can try your own value or use auto value using --parallel without argument.

Where dot after "--build ." means current folder.

On Windows:

Open the correct command prompt (e.g. 'x64 Native Tools Command Prompt for VS 2022'), which properly sets up the needed environment variables. Also, make sure that Ninja can be found (by adding the path to ninja,exe to your PATH env var)

> mkdir qt6-build
> cd qt6-build
> ..\qt6\configure.bat -prefix C:\path\to\install
> cmake --build .
> cmake --install .

Run configure -help to get an overview of available options.

You may also pass CMake options directly to configure:

 > ../qt6/configure -- -DQT_BUILD_TESTS=ON

All options specified after a double-dash (--), will be passed verbatim to CMake.

See cmake/configure-cmake-mapping.md in the sources for an overview of available options and how they map to CMake options.

On macOS for iOS:

Here is an example of CMake configure arguments used to build Qt for iOS on macOS:

-DCMAKE_BUILD_TYPE=Debug -DFEATURE_developer_build=ON -DQT_BUILD_TESTS=OFF -DQT_BUILD_EXAMPLES=ON -DQT_BUILD_EXAMPLES_BY_DEFAULT=OFF -DCMAKE_SYSTEM_NAME=iOS -DQT_HOST_PATH=~/dev/qt-dev-debug-non-fw/qtbase

Note that configuring tests as part of the build when targeting iOS is somewhat pointless because you won't be able to run them. To run an iOS app (or test), they need to be built with the xcode generator, and building the tests in-tree means they will be built with ninja. So you need to configure each test manually in a separate build directory.

Developer Builds

The configure option -developer-build sets the install prefix to the build directory and no install step is necessary. It also changes defaults so that all tests (including tests using private API that is otherwise not exported) can run.

This can take quite some time, though. If you do want to be able to build the tests, but only on request, configure with CMake variable QT_BUILD_TESTS_BY_DEFAULT=OFF:

 $ ../qt6/configure -developer-build -- -DQT_BUILD_TESTS_BY_DEFAULT=OFF
 $ cmake --build . --parallel

Later on, you can then build single tests, for instance :

 $ cmake --build . --target tst_qstyle

Use ninja -t targets to see all the targets provided in the build.

See cmake/README.md in the sources for details on configuring and building Qt 6 with CMake.

Running Tests

Once you've built (as long as you did build with tests enabled), you can run the tests either directly using ninja tst_qlocale_check (for example, to run tests/auto/corelib/text/qlocale/tst_qlocale) or via ctest (see its man page for further options) like

 $ ctest -V -R qlocale

(for the same example); the parameter to -R is a regular expression, matching test names. This includes the test output; if you omit -V that's skipped and you just get a single-line summary of the test result.

If you want to run only a particular test function, you pass it using the TESTARGS environment variable. For example:

$ TESTARGS=emptyCtor  ctest -V -R qlocale

And if you want to run a specific test function with a specific data-tag, you provide it after a colon:

$ TESTARGS=emptyCtor:en_GB  ctest -V -R qlocale

Tips

Working effectively with submodules

Use the configure script's -submodules option to reduce configuration and build times. If you plan to test functionality in the qtmultimedia submodule, you can configure qtmultimedia and all submodules that qtmultimedia depends on like this:

$ ../qt6/configure -developer-build -submodules qtmultimedia

If you did not initialize your source tree yet, you can reduce the number of checked-out submodules when you initialize the Qt repository. This way, only the submodule you specify and the submodules it depends on will be cloned into your source tree.

$ ../qt6/configure -developer-build -submodules qtmultimedia -init-repository -codereview-username <gerrit username>

If you plan to develop one specific submodule actively, it is a good idea first to configure a main build, as suggested previously in this section, and then configure the single submodule separately. This way, you can enable tests and examples only for the submodule you are developing.

$ mkdir ~/qt6-multimedia-build
$ ../qt6-build/qtbase/bin/qt-configure-module ../qt6/qtmultimedia -- -DQT_BUILD_TESTS=ON -DQT_BUILD_TESTS_BY_DEFAULT=ON

Using CMake presets to ease code navigation and debugging

Some integrated development environments (IDEs), such as Visual Studio Code and Visual Studio 2022, have great IntelliSense features that assist in navigating the Qt source code. These features work best when CMake is called through the IDE to configure Qt. For instance, if you are working with qtbase, you can create a file called qt6/qtbase/CMakeUserPresets.json and specify the CMake options required by qtbase in that file. When you open the qt6/qtbase folder in an IDE that supports CMake presets, it will configure Qt using the options from the preset file. This enables you to configure and build qtbase directly from your IDE, and you can even run and debug tests directly from the IDE.

The example below shows a CMakeUserPresets.json file for Windows. In this example, qtbase will be configured and built into C:\dev\qtbase-build, with tests enabled using the microsoft compiler. All Qt auto-tests will be available as debugging targets in your IDE. We set the path in the environment block to ensure the correct libraries are loaded during debugging. CMake presets also work with other operating systems and toolchains, and on Linux you may omit the 'toolset' and 'architecture' blocks. Remember to update the CMAKE_CXX_COMPILER, CMAKE_C_COMPILER, binaryDir and environment sections according to your compiler and directory layout.

{
  "version": 5,
  "configurePresets": [
    {
      "name": "ninja",
      "hidden": true,
      "generator": "Ninja"
    },
    {
      "name": "msvc",
      "hidden": true,
      "inherits": "ninja",
      "cacheVariables": {
        "CMAKE_CXX_COMPILER": "cl.exe",
        "CMAKE_C_COMPILER": "cl.exe"
      },
      "toolset": {
        "value": "v143,host=x64",
        "strategy": "external"
      },
      "architecture": {
        "value": "x64",
        "strategy": "external"
      }
    },
    {
      "name": "qtbase",
      "binaryDir": "C:/dev/qtbase-build",
      "hidden": true,
      "cacheVariables": {
        "FEATURE_developer_build": true,
        "QT_BUILD_EXAMPLES_AS_EXTERNAL": false,
        "QT_BUILD_TESTS": true,
        "QT_BUILD_TESTS_BY_DEFAULT": false,
        "CMAKE_BUILD_TYPE": "Debug"
      },
      "environment": {
        "PATH": "C:/dev/qtbase-build/bin;$penv{PATH}"
      }
    },
    {
      "name": "qtbase-msvc",
      "inherits": [
        "msvc",
        "qtbase"
      ]
    }
  ]
}